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Why dense correspondence?

Features are sparse

Some applications of dense correspondence

I Frame-rate conversion

I View morphing, view synthesis

I Stereo

De�nition
Compute a vector �eld (u(x , y), v(x , y)) over the pixels of image I1 so
that the pixels I1(x , y) and I2(x + u(x , y), y + v(x , y)) correspond.



Related topics

Motion vector

Optical �ow estimation

Registration

Stereo correspondence, epipolar geometry, recti�cation

Video matching

Image morphing, view synthesis



A�ne transformation

I1(x , y) and I2(x
′, y ′)

x ′ = a11x + a12y + b1 y ′ = a21x + a22y + b2 (1)

Rigid motions (translations and rotations)

Similarity transformations (rigid motions plus a uniform
change in scale)

Shape-changing transformations (shears)



Projective transformation

Homography

x ′ =
h11x + h12y + h13

h31x + h32y + h33
y ′ =

h21x + h22y + h23

h31x + h32y + h33
(2)

Related to perspective projection

I camera undergoes pure rotation (panning, tilting, and zooming only)

I scene is entirely plannar

Image registration

I Estimating the parameters



Homogeneous coordinates

Representing an image location (x , y) as a triple (x , y , 1)

I any triple (x , y , z) can be converted backt to an image coordinate(
x
z
, y
z

)
 x ′

y ′

1

 ∼
 h11 h12 h13

h21 h22 h23
h31 h32 h33

 x

y

1

 (3)

I The simbol ∼ means that the two vectors are equivalent up to a
scalar multiple



Normalized direct linear transform (Hartley and Zisserman)

Initial estimation of the parameters of a projective
transformation given a set of feature matches

I Two sets of features {(x1, y1), . . . , (xn, yn)} and
{(x ′

1
, y ′

1
), . . . , (x ′n, y

′
n)}

I Normalize each set to have zero mean and average distance from the
origin

√
2

I Construct a 2n × 9 matrix A, where each feature match generates
two rows of A

Ai =

[
0 0 0 xi yi 1 −y ′i xi −y ′i yi −y ′i
xi yi 1 0 0 0 −x ′i xi −x ′i yi −x ′i

]
(4)

(Ai [h11 h12 h13 h21 h22 h23 h31 h32 h33]
T = 0)

I Singular value decomposition A = UDV T . Let h be the last column
of V .

I Reshape h into a 3× 3 matrix Ĥ

I Recover the �nal projective transformation estimate as H = T ′−1ĤT



Scattered data interpolation

Find a continuous function f (x , y) de�ned over the �rst image plane so
that f (xi , yi ) = (x ′i , y

′
i ), i = 1, . . . , n.

I given a set of feature matches unevenly distributed in each image

I the goal is to generate a dense correspondence for every point in the
�rst image plane.



Thin-plate spline interpolation

f (x , y) =

[ ∑n

i=1 w1iφ(ri ) + a11x + a12y + b1∑n

i=1 w2iφ(ri ) + a21x + a22y + b2

]
(5)

where φ(r) is called a radial bassis function and

ri =

∥∥∥∥[ x

y

]
−
[
xi
yi

]∥∥∥∥
2

(6)



Solving a linear system

where

rij =

∥∥∥∥[ xi
yi

]
−
[
xj
yj

]∥∥∥∥
2

(7)



Thin-plate spline interpolation

n correspondences, 2(n + 3) parameters including 6 global a�ne motion
parameters and 2n coe�cients for rbfs



Choice of rbf

Smallest bending energy
Minimizingthe integral∫ ∫ (

∂2f

∂x2

)2

+

(
∂2f

∂x∂y

)2

+

(
∂2f

∂y2

)2

dx dy (8)

φ(r) = r2 log r (9)



B-spline interpolation

I Basis spline

I Not at the feature point locations but at control points on a lattice
overlaid on the �rst image plane

f (x , y) =
3∑

k=0

3∑
l=0

wkl(x , y)ψkl(x , y) (10)

ψ: cubic polynomials



Di�eomorphisms

I `�ow' the �rst image I1 to the second image I2 over time interval
t ∈ [0, 1]

I the �ow is represented by (u(x , y , t), v(x , y , t))

I a mapping S(x , y , t) specifying the �owed location of each point
(x , y) at time t, t = 0 for I1 and t = 1 for I2

∂S(x , y , t)

∂t
=

[
u(x , y , t)
v(x , y , t)

]
, t ∈ [0, 1] (11)



Optimization

The result is a di�eomorphism that does not su�er from the grid line
self-intersection problem



As-rigid-as-possible deformation

I f (x , y) = Tx,y (x , y), where Tx,y is a rigid transformation de�ned at
(x , y)

I each Tx,y is estimated by minimizing

n∑
i=1

‖Tx,y (xi , yi )− (x ′i , y
′
i )‖22

‖(x , y)− (xi , yi )‖2α2
(12)



Problems with scattered data interpolation techniques

Hard to control (e.g. to keep straight lines straight)

Independent of the underlying image intensities

Might reuqire signi�cant user interaction



Optical �ow

Estimating a motion vector (u, v) at every point (x , y) such
that I1(x , y) and I2(x + u, y + v) correspond:

Horn-Schunck method

Lucas-Kanade method



The Horn-Schunck method

Brightness constancy assumption

I (x + u, y + v , t + 1) = I (x , y , t) (13)

Lambertian assumption

I same brightness regardless of viewing direction

Ideal image formation process

I no vignetting



The Horn-Schunck method

Taylor expansion
∂I

∂x
u +

∂I

∂y
v +

∂I

∂t
= 0 (14)

∇I ·
[
u

v

]
= −∂I

∂t
(15)

The component of the �ow vector in the direction of the gradient is

−
∂I
∂t

‖∇I‖2
2

∇I (16)



The Horn-Schunck method

Considering smoothness

EHS(u, v) = Edata(u, v) + λEsmoothness(u, v) (17)

I λ is a regularization parameter

Edata(u, v) =
∑
x,y

(
∂I

∂x
u +

∂I

∂y
v +

∂I

∂t

)2

(18)

Esmoothness =
∑
x,y

(
∂u

∂x

)2

+

(
∂u

∂y

)2

+

(
∂v

∂x

)2

+

(
∂v

∂y

)2

(19)



Euler-Lagrange

λ∇2u =

(
∂I

∂x

)2

u +
∂I

∂x

∂I

∂y
v +

∂I

∂x

∂I

∂t
(20)

λ∇2v =

(
∂I

∂y

)2

v +
∂I

∂x

∂I

∂y
u +

∂I

∂y

∂I

∂t
(21)



Finite di�erences



Strength and weakness

Advantage

I difussion equation, creates good estimates of the dense
correspondence �eld even when the local gradient is nearly zero

I smoothly �lling in reasonable �ow vectors based on nearby locations

Disadvantage

I Taylor series approximation is noly valid when (u, v) is close to zero

I I1 and I2 are already very similar

Hierarchical or multiresolution approach



Hierarchical approach

Laplacian pyramid

Flow is computed for the coarset level of the pyramid

Warp the second image plane to the �rst using the estimated
�ow

I the �ow between the �rst image and the warped second image is
expected to be nearly zero



Improvements

Applying a median �lter to the incremental �ow �eld during
the warping process

D. Sun, S. Roth, and M. Black. Secrets of optical �ow
estimation and their principles. CVPR 2010.



The Lucas-Kanade method

Optical �ow vector at a point (x0, y0) is de�ned as the minimizer (u, v) of

ELK(u, v) =
∑
(x,y)

w(x , y)(I (x + u, y + v , t + 1)− I (x , y , t))2 (22)

where w(x , y) is a window function centered at (x0, y0).



Solution of the linear system

H =

 ∑
(x,y) w(x , y)

(
∂I
∂x

(x , y)
)
2 ∑

(x,y) w(x , y)
(

∂I
∂x

(x , y) ∂I
∂y

(x , y)
)

∑
(x,y) w(x , y)

(
∂I
∂x

(x , y) ∂I
∂y

(x , y)
) ∑

(x,y) w(x , y)
(

∂I
∂y

(x , y)
)
2


(23)

H

[
u

v

]
= −

[ ∑
(x,y) w(x , y)

(
∂I
∂x (x , y)

∂I
∂t (x , y)

)∑
(x,y) w(x , y)

(
∂I
∂y (x , y)

∂I
∂t (x , y)

) ] (24)



Comparisons

the Lucas-Kanade algorithm is local

I the �ow vector can be computed at each pixel independently

I easier to solve

the Horn-Schunck algorithm is global

I all the �ow vectors depend on each other through the di�erential
equation

Both assume that the �ow vectors are small

I pyramidal implementation



Re�nements and extensions

Changing the data term

Changing the smoothness term

Changing the form of cost functions



Changing the data term

Horn-Schunck brightness constancy assumtion

Uras et al. gradient constancy assumption

∇I (x + u, y + v , t + 1) = ∇I (x , y , t) (25)

I Uras et al. A computational approach to motion perception.
Biological Cybernetics, 60( 2): 79� 87, Dec. 1988.

I allows some local variation to illumination changes



Changing the data term

Brox et al. assume both brightness and gradient constancy

Edata(u, v) =
∑
x,y

(I2(x+u, y+v)−I1(x , y))2+γ‖∇I2(x+u, y+v)−∇I1(x , y)‖22

(26)

I Brox et al. High accuracy optical �ow estimation based on a theory
for warping. ECCV 2004.

I γ weights the contribution of the terms (typically γ ' 100)

I directly expresses the deviation from the constancy assumptions,
instead of using the Taylor approximation that is only valid for small
u and v

I Xu et al. introduce a binary swithch variable choosing either the
brightness constancy or gradient constancy assumption



Changing the data term

LK + HS

Edata(u, v) =
∑
(x,y)

w(x , y)(I2(x + u, y + v)− I1(x , y))
2 (27)

I A. Bruhn, J. Weickert, and C. Schnöorr. Lucas/ Kanade meets
Horn/ Schunck: Combining local and global optic �ow methods.
IJCV, 61( 3): 211� 31, Feb. 2005.

I small window size, local spatial smoothing, which makes the data
term robust to noise

I global regularization, which makes the �ow �eld smooth and dense

Probabilistic data term (Sun et al.)

I learned distribution of I2(x + u, y + v)− I1(x , y)

I mixture of Gaussian



Changing the smoothnes term

The smoothness term should be downweighted perpendicular
to image edges

I correspond to depth discontinuities

I Nagel and Enkelmann . An investigation of smoothness constraints
for the estimation of displacement vector �elds from image
sequences. IEEE Transactions on Pattern Analysis and Machine
Intelligence, PAMI-8( 5): 565� 93, Sept. 1986.

Esmoothness(u, v) = trace

([ ∂u
∂x

∂v
∂x

∂v
∂y

∂v
∂y

]T
D(∇I1(x , y))

[ ∂u
∂x

∂v
∂x

∂v
∂y

∂v
∂y

])
(28)

D : R→ R2×2 is the anisotropic di�usion tensor

D(g) =
1

‖g‖2
2
+ 2β2

(
g⊥g⊥

T
+ β2I2×2

)
(29)



Anisotropic di�usion and eigenvalues

I the major and minor axes of each ellipse are aligned with the
tensor's eigenvectors and weighted by the corresponding eigenvalues



Changing the smoothness term

as a prior term on the optical �ow �eld

I re�ects the assumptions about `good' �ows

I S. Roth and M. Black. On the spatial statistics of optical �ow.
IJCV, 74( 1): 33� 50, Aug. 2007.

I Field-of-Experts model



Changing the cost functions

Horn and Schunck: quadratic functions

Robust estimation

I M. J. Black and P. Anandan. The robust estimation of multiple
motions: Parametric and piecewise-smooth �ow �elds. CVIU, 63(
1): 75� 104, Jan. 1996.

I Robust data term

Edata(u, v) =
∑
x,y

ρ

(
∂I

∂x
u +

∂I

∂y
v +

∂I

∂t

)
(30)

I Robust smoothness term

Esmoothness(u, v) = ρ

(∥∥∥∥[∂u∂x , ∂u∂y , ∂v∂x , ∂v∂y
]∥∥∥∥

2

)
(31)

I ρ(z) = z2: Horn-Schunck

I other choices



Robust penalty functions typically used for optical �ow



Occlusion

I Implicit assumption: every pixel in I2 corresponds to some pixel in I1.
This assumption is violated at occlusions.

I Cross checking, or left-right checking

(u, v)fwd(x , y) = −(u, v)bwd(I2(x + ufwd(x , y), y + v fwd(x , y))) (32)

I Robust cost functions can partially alleviate the occlusion problem



Layered Flow

Layered motion for video matting

Post-converting a monocular �lm into stereo

I M. J. Black and P. Anandan. The robust estimation of multiple
motions: Parametric and piecewise-smooth �ow �elds. CVIU, 63(
1): 75� 104, Jan. 1996. (using robust penalty functions to estimate
a dominant motion in the scene, classify inlier pixels into a solved
layer, and re-apply the process to outlier pixels)

I M. Black and A. Jepson. Estimating optical �ow in segmented
images using variable-order parametric models with local
deformations. PAMI, 18( 10): 972� 86, Oct. 1996. (�ow �eld in
each region can be represented by a low-dimensinal parametric
transformation (e.g. a�ne), coarse to �ne)

I Y. Weiss. Smoothness in layers: Motion segmentation using
nonparametric mixture estimation. CVPR 1997. (the non-parametric
�ow �eld is smooth, using EM to estimate layer memberships and
estimate the �ow �eld in each layer)



Large-displacement optical �ow

T. Brox, C. Bregler, and J. Malik. Large displacement optical
�ow. CVPR 2009.

I small structure, fast motion, e.g. hand waving

I starts with the segmentation of each image into roughly
constant-texture patches, each of which is described by a SIFT-like
descriptor

I matching descriptors, as additional constraints

C. Liu, J. Yuen, and A. Torralba. SIFT �ow: Dense
correspondence across scenes and its applications. PAMI, 33(
5): 978� 94, May 2011.

I replaces the brightness constancy assumption with a SIFT-descriptor
constancy assumption, ‖S2(x + u, y + v)− S1(x , y)‖

I dense SIFT

I designed to match between di�erent scenes



Human-assisted motion annotation

C . Liu, W. Freeman, E. Adelson, and Y. Weiss.
Human-assisted motion annotation . CVPR 2008.

I semi-automatically created layers



Evaluation

http://vision.middlebury.edu/flow/

http://vision.middlebury.edu/flow/


Epipolar Geometry

Two images taken at the same time, in di�erent positions, by
di�erent cameras

I don't need to search across the entire image to estimate the motion
vector (u, v)

I only one degree of freedom for the possible correspondence



Epipolar line and epipole

I all of the epipolar lines in one image intersect at the epipole, the
projection of the camera center of the other image

I every point in the scene has to lie on one of those planes



The fundamental matrix

I the epipolar line in one image corresponding to a point in the other
image can be computed from the fundamental matrix

I a 3× 3 matrix F that concisely expresses the relationship between
any two matching points

I any correspondence {(x , y) ∈ I1, (x
′, y ′) ∈ I2} must satisfy x ′

y ′

1

T

F

 x

y

1

 = 0 (33)

I the fundamental matrix F is de�ned up to scale

I F has rank 2

I what are the coe�cients on x ′, y ′, and 1?



Geometric argument to see why F has rank 2

I all the epipolar lines in I1 intersect at the epipole e = (xe , ye)

I for any (x ′, y ′) ∈ I2, e lies on the corresponding epipolar line x ′

y ′

1

T F

 xe
ye
1

 = 0 (34)

holds for every (x ′, y ′)

I it means that

F

 xe
ye
1

 = 0 (35)

so [xe , ye , 1]
T is an eigenvector of F with eigenvalue 0.

I similarly, [x ′e , y
′
e , 1
′]T is an eigenvector of FT with eigenvalue 0.



Representating F as a factorization
I based on the epipole in the second image

F =

 x ′e
y ′e
1


×

M (36)

where M is a full-rank 3× 3 matrix. The notation [e]×:

[e]× =

 0 −e3 e2
e3 0 −e1
−e2 e1 0

 (37)

I rank?
I the fundamental matrix is not de�ned for an image pair that shares

the same camera center
I a project transformation that directly speci�es each pair of

corresponding points; the same type of relationship holds when the
scene contains only a single plane

I the fundamental matrix for an image pair taken by a pair of
separated cameras of a real-world scene is de�ned and unique (up to
scale)



Estimating the fundamental matrix

I like a projective transformation, the fundamental matrix can be
estimated from a set of feature matches

[x ′i xi , x
′
i yi , x

′
i , y
′
i xi , y

′
i yi , y

′
i , xi yi 1][f11 f12 f13 f21 f22 f23 f31 f32 f33]

T = 0
(38)

I collecting the linear equations for each point yields an n × 9 linear
system Af = 0

I basic algorithm: normalized eight-point algorithm



Normalized eight-point algorithm

1. The input is two sets of features {(x1, y1), . . . , (xn, yn)} and
{(x ′

1
, y ′

1
), . . . , (x ′n, y

′
n)}. Normalize each set of feature matches to

have zero mean and average distance from the origin
√
2. Done by a

pair of similarity transformations S and S ′.

2. Construct the n× 9 matrix A, where each feature match generates a
row.

3. Compute the singular value decomposition of A, A = UDV T . Let f
be the last column of V (corresponding to the smallest sigular
value).

4. Reshape f into a 3× 3 matrix F̂ , �ling in the elements from left to
right in each row.

5. Compute the singular value decomposition of F̂ , F̂ = UDV T . Set
the lower right (3, 3) entry of D equal to zero to create D̂ and
replace F̂ with UD̂V T .

6. Recover the �nal fundamental matrix estimate as F = S ′T F̂ S .



Example



Extensions

I Maximum likelihood estimate under the assumptions that the
measurement errors in each feature location are Gaussian

I Non-linear optimization and RANSAC

I When each camera's location, orientation, and internal con�guration
are known, the funcamental matrix can be computed directly



Image recti�cation

I epipolar lines are typically slanted, which can make estimating
correspondences along conjugate epipolar lines complicated due to
repeated image resampling operations

I recti�cation: making conjugate epipolar lines coincide with scanlines

I epipolar lines are parallel and the epipoles are `at in�nity',
represented by the homogeneous coordinate [1, 0, 0]

I the fundamental matrix for a recti�ed image pair is given by

F ∗ =

 0 0 0
0 0 1
0 −1 0

 (39)

I for a correspondence in the recti�ed pair of images, y ′ = y ,
corresponding to the de�nition of recti�cation.



Recti�cation method proposed by Hartley

I the idea is to estimate a projective transformation H2 for the second
image that moves the epipole to the homogeneous coordinate
[1, 0, 0] while resembling a rigid transformation as much as possible

I Estimate the fundamental matrix F from the feature matches using
the eight-point algorithm.

I Factor F in the form of F = [e′]×M, where e′ = [x ′e , y
′
e , 1]

T is the
homogeneous coordinate of the epipole in the second image.

I Choose a location (x ′
0
, y ′

0
) in the second image, e.g., the center of

the image, and determine a 3× 3 homogeneous translation matrix T
that moves (x ′

0
, y ′

0
) to the origin.

I Determine a rotation matrix R that movels the epipole onto the
x-axis; let its new location be (x∗, 0).

I Compute H2 as

H2 =

 1 0 0
0 1 0

−1/x∗ 0 1

RT (40)



Recti�cation method proposed by Hartley (cont.)

5.(cont.) The �rst matrix moves the epipole to in�nity along the x-axis.
6.Apply the projective transformation H2M to the features in I1 and the
projective transformation H2 to the features in I2 to get a transformed set
of feature matches.
7.At this point, the two images are recti�ed, but applying H2M to I1 may
result in an unacceptably distorted image. The next step is to �nd a
horizontal shear and translation that bring the feature matches as close
together as possible.

n∑
i=1

(ax̂i + bŷi + c − x̂ ′i )
2 (41)

8.Compute H1 as

H1 =

 a b c

0 1 0
0 0 1

H2M (42)



Example



Stereo correspondence

Estimating the disparity map

Quantized disparity values

Occlusions are explicitly modeled

Monotonicity assumption

Calibration is assumed known

Images are acquired simultaneously
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